Algorithm for Solving Tridiagonal Matrix Problems in Parallel
نویسندگان
چکیده
A new algorithm is presented, designed to solve tridiagonal matrix problems efficientiy with parallel computers (multiple instruction stream, multiple data stream (MIMD) machines with distributed memory). The algorithm is designed to be extendable to higher order banded diagonal systems.
منابع مشابه
Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle
In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...
متن کاملA Parallel Algorithm for Circulant Tridiagonal Linear Systems
In this paper, based upon the divide-and-conquer strategy, we propose a parallel algorithm for solving the circulant tridiagonal systems, which is simpler than the two previous algorithms proposed by Agui and Jimenez ( 1995) and Chung et al. ( 1995). Our algorithm can be easily generalized to solve the tridiagonal systems, the block-tridiagonal systems, and the circulant block-tridiagonal syste...
متن کاملParallel dichotomy algorithm for solving tridiagonal SLAEs
A parallel algorithm for solving a series of matrix equations with a constant tridiagonal matrix and different right-hand sides is proposed and studied. The process of solving the problem is represented in two steps. The first preliminary step is fixing some rows of the inverse matrix of SLAEs. The second step consists in calculating solutions for all right-hand sides. For reducing the communic...
متن کاملSplitting of Expanded Tridiagonal Matrices
The article addresses a regular splitting of tridiagonal matrices. The given tridiagonal matrix A is rst expanded to an equivalent matrix e A and then split as e A = B R for which B is block-diagonal and every eigenvalue of B R is zero, i.e., (M N) = 0. The optimal splitting technique is applicable to various algorithms that incorporate one-dimensional solves or their approximations. Examples c...
متن کاملParallel Strategy for Solving Block-Tridiagonal Linear Systems
Efficient parallel iterative algorithm is investigated for solving block-tridiagonal linear systems on distributed-memory multi-computers. Based on Galerkin theory, the communication only need twice between the adjacent processors per iteration step. Furthermore, the condition for convergence was given when the coefficient matrix A is a symmetric positive definite matrix. Numerical experiments ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 1995